A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications.

نویسندگان

  • C Sturesson
  • S Andersson-Engels
چکیده

A time-dependent mathematical model for the heat transfer in laser-induced hyperthermia has been developed. The model calculates the temperature distribution in surface-irradiated tissues. Good agreement was found between the predictions of the model and in vitro experimental results obtained for bovine liver irradiated with an expanded beam from a Nd:YAG laser. Surface evaporation of water was included in the model and experimentally verified. The discrepancy between the measured and the calculated rise in temperature at three different depths on the axis of symmetry of the irradiating beam was found to be less than 5% after 15 min of irradiation. When irradiating in air and not accounting for the surface evaporation in the model, the accuracy of the model predictions was only 75-80%. The model was then used to investigate the influence of surface evaporation of water on the total temperature distribution theoretically in a clinically relevant case. From the numerical simulations, it was shown that, simply by providing a moistened liver surface, the maximum steady-state temperature could be forced into the tissue to a depth of 4 mm. It was also shown that, by employing the numerical model during the initial phase of hyperthermia treatment, overshooting of the temperature during the transient thermal build-up time could be prevented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...

متن کامل

A dual reciprocity boundary element method for photothermal interactions in laser-induced thermotherapy

Laser-induced thermotherapy (LITT) is a minimally invasive laser hyperthermia procedure for the treatment of localized tumors. Mathematical modeling of the photothermal processes in laser-irradiated tissues is essential for optimal treatment planning. In this study, A Monte Carlo method is introduced to simulate photon transport in the tumor tissues with complex geometries. The dual reciprocity...

متن کامل

Size Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence

Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 40 12  شماره 

صفحات  -

تاریخ انتشار 1995